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Abstract. It is shown that the lottery competition model permits coexistence in a 
stochastic environment, but not in a constant environment. Conditions for 
coexistence and competitive exclusion are determined. Analysis of these 
conditions shows that the essential requirements for coexistence are overlapping 
generations and fluctuating birth rates which ensure that each species has 
periods when it is increasing. It is found that a species may persist provided only 
that it is favored sufficiently by the environment during favorable periods 
independently of the extent to which the other species is favored during its 
favorable periods. 

Coexistence is defined in terms of the stochastic boundedness criterion for 
species persistence. Using the lottery model as an example this criterion is 
justified and compared with other persistence criteria. Properties of the 
stationary distribution of population density are determined for an interesting 
limiting case of the lottery model and these are related to stochastic bounded- 
ness. An attempt is then made to relate stochastic boundedness for infinite 
population models to the behavior of finite population models. 

Key words: Stochastic competition models - Stochastic stability - Stochastic 
boundedness 

1. Introduction 

Theoretical ecologists have tended to regard a stochastic environment as inimical to 
species coexistence. Indeed, the usual stability analysis of deterministic models is 
often conducted from this viewpoint. Common reasoning is that coexistence occurs 
only if the model system can withstand environmental fluctuations, and for this, it is 
argued, there must be an invariant set, such as an equilibrium point or cycle, with a 
large domain of attraction. Also there must be rapid return to this invariant set 
following perturbation. Detailed discussions of these ideas are given by Lewontin 
(1969), Holling (1973), May (l 974), Leigh (1975), Beddington et al. (1976), and Goh 
(1975, 1976). 
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The point of view represented above undoubtedly has some validity, but 
environmental fluctuations are not always bad. For example, it is now well known 
that some kinds of deterministic fluctuations in the environment may permit 
coexistence in models where a constant environment does not (Stewart and Levin, 
1973; Koch, 1974; Armstrong and McGehee, 1976; Levins, 1979; Cushing, 1980; 
de Mottoni and Schiaffino, 1981). That a stochastic environment can promote 
coexistence was shown by Chesson and Warner (1981) in a model of competition 
for space. Chesson and Warner demonstrate heuristically that stochastic fluc- 
tuations in the environment can provide opportunities for a species to increase 
against a generally superior competitor. Coexistence is then possible provided the 
inferior species does not decline too rapidly during unfavorable periods at low 
population densities. Such coexistence relies on environmental fluctuations, indeed 
coexistence is more likely with stronger fluctuations. 

The case of a stochastic environment studied by Chesson and Warner is an 
important one because environmental variability commonly has a highly stochastic 
component and it is mainly this stochastic component that people have in mind 
when analyzing the stability of a deterministic model. 

This paper provides the mathematical demonstration of Chesson and Warner's 
heuristically justified results. Since the analysis seeks situations in which species 
coexistence occurs, it necessarily becomes involved in the important question of 
how to define species persistence in a stochastic model. There are many ideas on this 
(May, 1974; Botkin and Sobel, 1975; Ludwig, 1976; Turelli, 1978a, 1981 ; Chesson, 
1978). The analysis here illustrates and justifies one particular method of defining 
species persistence, the stochastic boundedness criterion (Chesson, 1978) which can 
be stated as follows: 

A species with population size N(t) at time t is said to persist in the sense of 
stochastic boundedness if 

inf supr < ~) = 0. (1) 
~ : > 0  t 

This will be so, for example, if N(t) converges in distribution to a positive random 
variable as t ~ ~ ,  but the idea of stochastic boundedness is more general than this 
for (1) does not imply convergence in distribution. The criterion is best understood 
in terms of the quantiles (v(t) of the probability distribution of N(t), which are 
defined by the equation #(N(t) <~ (v(t)) = p, i.e. ~p(t) cuts offthe lower proportionp 
of the probability distribution of N(t). Equation (1) is satisfied if and only if ~p(t) is 
bounded below by some positive number ~p independent of t, for every p. Thus 
stochastic boundedness generalizes the deterministic notion that a species persists if 
N(t) is bounded below by a positive constant independent oft .  To take this analogy 
further, let N* be the positive random variable with quantiles ~p, then N(t) is 
stochastically larger than N* for all t, i.e. ~(N* <~ x) >t ~(N(t)  <~ x) for all t and x. 
As a short hand, a population that persists in the sense of stochastic boundedness 
will be said to be s.b. persistent. 

The justification of the stochastic boundedness criterion is discussed here in 
detail using the lottery model as an example. However the first sections of the paper 
analyze the lottery model to determine the conditions under which the species do 
coexist in the sense that both species are s.b. persistent; and these conditions are 



The Stabilizing Effect of a Random Environment 3 

analyzed to determine the kinds of  environmental fluctuations that are favorable to 
coexistence. 

2. The Population Model 

Chesson and Warner's lottery model is based on a description by Sale (1977) of the 
possible workings of a coral reef fish community. Consider just two species and 
assume that the adults require a territory or "home" (an area held to the exclusion 
of others) in order to reproduce. The individuals compete for space to establish 
homes and it is assumed that this space is always in short supply. Thus if Pi(t) is the 
proportion of space occupied by species i, then Px(t) + Pz(t) = I. 

During the time intervaI (t, t + 1-1, b~(t) of the adults of species i die and so the 
proportion of space becoming available during this time interval is bl(t)Pl(O 
+ b2(t)Pz(t). Juveniles settle in this space and become adults. 

The number of juveniles of species i seeking homes during (t, t + 1] is fii(t)Pi(t) 
and it is assumed that the proportion of the available space taken up by species i is 
equal to 

c3~(OP~(O (2) 
clfi1(t)P~(t) + c2flz(t)P2(t)" 

Formula (2) embodies the lottery aspect of the model. It represents an allocation of 
space that is random within species but possibly biased between species. If  
allocation of space is random between species then cl = c2. In general the 
parameter c~ may be interpreted as proportional to the per capita rate of discovery 
of available space by species i and is a measure of the competitive ability of species i. 

Putting all of this together we obtain the following equations governing 
population change: 

~(t)P~(t) 
Pl( t  + 1) = [1 - ~)l(t)]Pl(t) + [31(t)Pi(t) + 32(t)P2(t)] 

(3) 

where fl*(t) = cifii(t) the "birth-competition" parameter. There is an analogous 
equation for species 2 but since Pl(t)  + Pz(t) = 1 equation (3) completely specifies 
the system. In this equation environmental variability is specified by variation in 
fl*(t) and hi(t), both of which are assumed strictly positive. The environment 
process is $o = {d~(t), t = 0, 1 . . . .  } where g(t) = (]3~'(t), fit(t),/3*(0, 32(t)). 

In writing down equation (3) a number of implicit assumptions have been 
introduced. Like most deterministic models, and stochastic models with random 
environment, it treats population size as a continuous variable and it makes no 
allowances for stochasticity at the level of the individual animal (within-individual 
variability, Chesson, 1978). As such it effectively assumes an infinite population 
spread homogeneously over an infinite area (Chesson, 1981). The assumption of 
homogeneity is partly justified if the juvenile organisms disperse widely as Sale 
(1977) claims is true for some coral reef fishes. The effect of the infinite population is 
discussed below in the section on finite populations and stochastic boundedness. 



4 P.L. Chesson 

To analyze the model, equation (3) can be rearranged to give 

P,(t + 1) = P,(t) 1 + [1 - Pl(t)] ~ +fl*(t)P2(t)J " (4) 

It is clear from (4) that Pl(t  + 1) is greater than Pl(t) or less than Pl(t) depending 
on whether f i*(t)h2(t)- f l~(t)bl( t)  is positive or negative. Define p =  
fl*(t)bz(t)/fl~(t)f1(t) and consider the case of a constant environment (where fl*(t) 
and hi(t) are independent of t, i = 1,2). It is clear that Pl(t) ~ 0 or 1 depending on 
whether p < 1 or p > 1. For p = 1 all possible values of P~(t) are neutral equilibria 
and so P~(t) remains constant for all time. Unless p = 1 a constant environment 
does not permit coexistence in this model. In the standard interpretation of 
deterministic models (e.g. May, 1974) the neutral stability of the case p = 1 would 
not be regarded as giving coexistence because there is no deterministic stabilizing 
tendency and therefore environmental variability should lead to extinction of one 
species. However when environmental variability is included in the model we do not 
always find this; indeed, there are broad ranges of parameter values giving a strong 
coexistence even though the deterministic analogue has neutral stability (see 
below). 

The stochastic versions of this model behave differently depending on whether 
generations are overlapping (hi(t)< 1) or nonoverlapping (hi(t)-= 1). When 
generations are nonoverlapping equation (3) can be written in the simple linear 
form 

Pl(t + 1)/P2(t + 1) = p(t)[Pl(t)/P2(t)] (5) 

where p(t) = fi*(t)/fi*(t). Thus the behavior of Pl(t)  depends on the behavior of the 
product 1-J t. o P(J). If the environment process g is stationary and ergodic then 

a . s .  J =  a . s .  . 

P l ( t )  ~ 0 or Pl(t) ~ 1 depending on whether E logp is positive or negative, or 
equivalently depending on whether the geometric mean of p is greater than 1 or less 
than 1. Thus when Elog p ~ 0 we obtain results analogous to those for a constant 
environment. 

When E log p -- 0 the situation is not so clear. Assume that log Y[~.=o p(J) is 
asymptotically normal with mean 0 and variance a2t, as will be the ease if the 
environment satisfies suitable moment and asymptotic independence conditions 
(Ibragimov, 1975 ; Heyde, 1974), then asymptotically log P~(t)/P2(t) has this same 
distribution which means that P 1 (t) converges in distribution to a random variable 
P such that ~ ( P  = 0) = ~ ( P  -- 1) = �89 This means that neither species is s.b. 
persistent. However it is also clear that N ( P i ( t ) ~  0 ) =  0, i = 1,2, so that with 
probability 1 neither species density converges to 0. This suggests that both species 
persist, indeed having probability 0 of  converging to 0 is highly intuitive as a 
criterion for persistence; but it is argued below, in the section on finite models and 
stochastic boundedness, that the stochastic boundedness criterion does give the 
correct interpretation here, and this particular situation should be regarded as 
resulting in extinction of one of the two species. Thus we conclude that in no case 
does the stochastic nonoverlapping generations model lead to species coexistence. 
However we shall see in the next section that different conclusions are obtained 
when generations are overlapping. 
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3. Boundary Analysis of the Stochastic Model with Overlapping Generations 

The analysis of  the stochastic model with overlapping generations is divided into 
three parts. In this section we find criteria indicating whether Pi(t) ~ 0 or Pi(t) ~ 0; 
in section 4 we study the kinds of  environmental variability for which these criteria 
are satisfied; and in section 5 we show that both species are s.b. persistent, i.e. 
coexistence occurs, for most of  the cases where we have found N(&( t )  --, O) = O, 
i =  1,2. 

We assume throughout this section that 0 < c~i(t) < 1 and fl*(t) > 0. Moreover 
we shall assume that g(0), 8 ( l ) , . . .  are i.i.d, although the proof  of  Theorem 3.1, 
dealing with cases of  persistence, only requires a law of large numbers to hold. 

To begin the analysis suppose that Pl( t )  is small. From equation (4) we have the 
approximation 

P, ( t  + 1) --- Pl(t)[1 + 6~(p - 1)] (6) 

where p = fi*(t)62(t)/fl~(t)61(t), and t is suppressed in 61 and p for notational 
simplicity. From (6) we see that 

Aa = Elog[1 + 6,(p - 1)] (7a) 

is an approximate average instantaneous growth rate for species 1 when Pl( t )  is 
small. The corresponding quantity for species 2 is 

A 2 = Elog[1 + fiz(p -1 - 1)]. (7b) 

We shall refer to Az and A2 as the boundary growth rates. The usual invasibility 
analysis (Turelli, 1978b) now holds that Pi(t) will tend to increase when small if 
Az > 0. Indeed we show that this is so here and that also N(Pi( t )  ~ 0) = 0 whenever 
A i > 0 .  

First of all we obtain a lower bound, independent of P~(t), to the mean 
instantaneous growth rate. We define F(P~ (t)) to be the finite growth rate of  species 
1, i.e. P~(t + 1)/Pl(t)  = 1 + F(Pa(t))  and F is given explicitly as 

r(p) (1 ,fl*(t)g)z(t) - fl*(t)3~(t) 
= - P ) ~ + - ( - 1  - - ~ } ( t )  " (8) 

The function F(p)  is always monotone in pe (0 , 1 )  and so the monotone 
convergence theorem can be used to show that 

A~ = lim Elog[1 + F(0) A F(c)] (9) 
c ~ 0  

whenever A, exists as a finite or infinite value. Thus when A ~ > 0 there is a positive 
constant c such that 

Elog[1 + F(0) /x F(c)] > 0. (10) 

Now if P~(t) --, 0 there is a time r such that P~(t + ~) < c for all t > 0. However 

t+r-I 

Pl( t  + v)/Pl(z)  >- I~ {1 + F(s, 0) /x r(s ,c)} .  (11) 
$ = r  

From (10) and the strong law of large numbers the RHS --+ oc as t -+ ao, a.s. 
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contradicting the hypothesis that Pl( t  + z) remains below c for all t, a.s. Hence 
Pi( t )  @ 0, a.s. Similarly P z ( t )  -7 ~ 0 a.s. whenever A 2 > 0. Thus we have proved the 
following theorem. 

Theorem 3.1. I f  Ai > 0 then ~(Pi ( t )  ~ O) = O. 

It is possible to have A t and A 2 simultaneously positive so that with probability 
1 neither species density approaches 0. Under mild additional conditions it is shown 
in section 5 below that both species persist in the sense of stochastic boundedness, 
that is they will coexist in the sense accepted in this paper. The interesting feature is 
that this situation of coexistence is only possible in a variable environment for we 
have seen above that coexistence does not occur in the lottery model with a constant 
environment. A study of the kinds of environmental variability leading to 
coexistence is deferred until section 4, below, because we must now complete our 
analysis of the implications of the signs of the boundary growth rates by considering 
the situations where one or both boundary growth rates are negative. 

First, assume that A 1 is negative. In general 

P~(t + 1)/P~(t) <~ 1 + F(t, O) v F(t, c) (12) 

for 0 < P~(t) <~ c. Moreover the monotone convergence theorem shows that 

A1 = lim Elog{1 + F(0) v F(c)} (13) 
cl0 

so that for c sufficiently small the quantity Elog{1 + F(0) v F(c)} is a negative 
upper bound to the mean instantaneous growth rate for P~(t)<~ c, which is 
independent of the value of P1 (t). The existence of this negative upper bound means 
that Pl(t)  --* 0 provided P~(t) is less than e infinitely often. This is stated precisely as 
the following lemma which is proved in Appendix I as are all lemmas in this section. 

Lemma 3.2. I f  A a < 0 then there is a c > 0 such that Elog{  1 + F(0) v F(c)} < 0 and 
for  this c, P i ( t ) e  (0, e) i.o., implies Pl(t)--* 0 a.s. 

Coming near 0 infinitely often is obviously a necessary condition for con- 
vergence to 0 and Lemma 3.2 shows that it is also sufficient when A~ < 0. The 
following lemma shows that unless p -= 1 the density of at least one of the two 
species must approach 0 arbitrarily closely, infinitely often, as a result of 
accumulated fluctuations of the environment. 

Lemma 3.3. I f  ~ ( p  = 1) < 1 then, for  every ~ > 0 

~ (Pa( t )  e [~, 1 - ~]c i.o.) = 1. 

Unless the Ai are both 0, the hypothesis of Lemma 3.3 will hold. Combining this 
with Lemma 3.2 it is clear that when A~ < 0 and A2 < 0 either Pi( t )  ~ 0 or 
P2(t) ~ 0, a.s. Moreover it is also clear from the proof  of Lemma 3.2 (Appendix I) 
that N(Pi( t )  --, 0) > 0, i = 1, 2, and so the species density that converges to 0 cannot 
be predicted with certainty. We shall therefore refer to this situation as random 
exclusion. 

For the remaining case where the A~ have opposite signs we need the following 
lemma which shows that the species with the negative boundary growth rate is the 
species which experiences arbitrarily low densities infinitely often. 
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Lemma 3.4. I f  At > 0 then, for every e > 0 , ~ ( P l ( t ) e  (1 - e, 1)i.o.) = 1. 

Combining Lemmas 3.2 and 3.4 we see that P2(t) must converge to 0 when 
A1 > 0 and A2 < 0. The results we have obtained are summarized as follows. 

Theorem 3.5. 1. l fA i  > 0, i = 1,2 then ~@(Pi(t) --*0) = 0, i = 1,2. 
2. I f  A~ > 0 and Aj < 0 then Pi(t) ---, 1, a.s., Pj(t) ~ O, a.s. 
3. I f  Ai < 0, i =  1,2 then ~(Pi(t)--+O)> 0, i =  1,2, and ~ ( P I ( t ) ~ O  or 

P2(t) ~ 0 )  = 1. 

This theorem is the first stage in the process of  determining the circumstances 
under which coexistence will occur in the sense that both species are s.b. persistent. 
In case 3 neither species is s.b. persistent because in this case sups r < p) 
>i g~(P~(t) ~ 0) > 0 tor all positive p. In case 2 species i is s.b. persistent while 
speciesjis not. In case 1 mild additional conditions are necessary to ensure that both 
species are s.b. persistent (section 5, below) so that coexistence occurs. 

4. The Effect of Environmental Variability on Boundary Growth Rates and 
Coexistence 

We assume here that the "mild additional conditions" have been imposed so that 
coexistence occurs when both boundary growth rates are positive. 

For  both boundary growth rates to be positive the assumption of overlapping 
generations (c5 i < 1) is essential for, as we have seen, coexistence does not occur 
otherwise. The parameter p must take on values on either side of I, i.e. log p must 
take both positive and negative values so that each species has periods when it 
increases or is "favored" by the environment. As might be expected the magnitude 
of the death rates is an important factor in coexistence for when death rates are large 
a situation is approached where coexistence is impossible, namely the nonover- 
lapping generations situation. We shall see, however, that variation in death rates 
alone is incapable of producing coexistence. Therefore in most of our development 
we shall take the probability distributions of the death rates as given and see how 
coexistence is affected by different levels of variation in logp, resulting from 
different levels of variation in the birth-competition parameters, the/~*. We also 
assume that Elog(1 - 6 1 ) >  - o e  so that death rates do not approach 1 too 
frequently. 

For  fixed death rate distributions, coexistence always results from sufficient 
variation of logp about 0. Indeed coexistence will occur provided only that the 
favorable periods are sufficiently favorable, as measured by the magnitude of log p, 
regardless of how unfavorable the unfavorable periods might be. This remarkable 
result can be seen from the following inequalities which are derived in Appendix 2. 

A1 7> Ec51(logp) + + Elog(1 - 61)1~0<1~ (14a) 

A 2 /> Ec~2(logp)- + Elog(1 - 02)1{o> 1}- (14b) 

Note that (log p) + = 0 v log p and (log p)-  = 0 v ( -  log p). The quantity (log p) + 
is 0 during unfavorable periods for species 1 and if it is sufficiently large during 
favorable periods, species 1 will persist. Similarly species 2 persists if ( logp)-  is 
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sufficiently large during species 2's favorable periods. In the case of small constant 
death rates these statements can be made quite precise for then (14) implies that A 1 
and A2 will be positive respectively when the following inequalities hold 

E[( logp)+Lp > 1] > ~(p < 1)/~(p > 1) (15a) 

and 

E [ ( l o g p ) - ] p  < 1] > ~(p > 1)/~(p < 1). (15b) 

Thus species 1 (species 2) persists if the mean of (log p) + ((log p) -) during favorable 
periods is greater than the odds of an unfavorable period. These sufficient 
conditions for coexistence can be satisfied in the presence of arbitrarily large mean 
differences in the extents to which the environment favors each of the two species as 
measured by the natural measure p = Elog p = E(log p)+ - E(log p)-.  A natural 
measure of variation in log p about 0 is given by E(log p) + /x E(log p)-.  If this 
quantity is greater than 1 then the inequalities (15) will be satisfied and coexistence 
will occur. In the general case, the boundary growth rates will be positive if 
E(logp) + ^ E(logp)- > Elog6~(1 -~ i ) ,  i =  1,2 (Appendix 2, inequality (A3)). 
This latter condition is highly conservative but it still indicates the fundamental role 
of E(log p) + /x E(log p)- .  

We have found sufficient but by no means necessary conditions for coexistence. 
To obtain conditions which are both necessary and sufficient the boundary growth 
rates must be calculated more precisely. This is done numerically in Chesson and 
Warner (1981). Alternatively one can use the approximate formulae given there and 
in Appendix 2 for the case of small death rates. However qualitative insights into 
the roles of various factors affecting coexistence do not require such calculations 
and we now turn our attention to such insights. In seeing how various factors affect 
coexistence we shall generally regard an increase in some factor as favorable if it 
increases both boundary growth rates. 

The tendency of the A~ to increase with variation in log p comes about largely 
from the convexity of log[1 + ~51( p - 1)] as a function of logp. The case of 
constant death rates, but variable log p, is especially illuminating for then Jensen's 
inequality implies that 

A1 = Elog{1 + 6a(p - 1)} > log{1 + 61(e"-  1)} (16a) 

and 

A2 = Elog{l + 62(p -~ - 1)} > log{1 + 62(e -u - 1)}. (16b) 

Thus variation in log p increases both boundary growth rates over the values that 
would obtain in a constant environment with log p ~/~, the mean advantage. 
Moreover it follows from our results below that the differences between the LHSs 
and RHSs of (16) increase with variation in log p. For # = 0 the RHSs of (16) are 0 
so that any variation at all in logp is sufficient for both A~ to be positive. 

To see how the Ai increase with increasing variability we return to the general 
case where the 6~ are possibly variable and we suppose that logp is naturally 
divisible into additive components of variation. We write log p = log R + X where 
X is the component of variation to be increased. For example X could be 
log f i * / f l * -  E logfi~/fi* representing variation in birth-competition. To justify 
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various limits below we assume Ellogp[ < oo and EIX[ < oo, but we do not assume 
that Xhas  mean 0, only that Xtakes  both positive and negative values. To increase 
variability in X we write X = aX '  where X'  is some given random variable not 
depending on a and for definiteness we assume that E(X' )  + /x E ( X ' ) -  = 1 so that 
a = E X  + /x E X - ,  the natural measure of  variation about  0 introduced above. 

The Ai are averages of  strictly convex functions of  o- and therefore the Ai are 
themselves strictly convex functions of  a. Moreover 

dA 1 ~51RX' e~X' 
- - - =  E . (17) 
da l + 6a(Re ~x' - 1) 

As a consequence of convexity the (dA~/da) are increasing functions of  o-. To see that 
they are eventually positive we note that 

dA1 dA2 
- -  -~ E(X ' )  + and - -  - .  E ( X ' ) -  (18) 
da d~7 

giving the surprising result that Xis ultimately the only factor involved in the rates 
of  increase of  the A~. An even more remarkable consequence of  this is that 
A1 ~ E X  + and A2 ~ E X -  for large a so that Xemerges  as the dominant  factor in 
the A~ as the variability specified by Y increases. Since we are flee to choose 
X = log p, this shows that A1 ~ E(log p) + and A2 ~ E(log p ) - .  These asymptotic 
expressions are generally quite poor  approximations to the actual values but they 
do indicate interesting trends. For  example these expressions show that the A~ tend 
to lose any dependence on the cSi that is not already accounted for in log p. The lower 
bounds (14) seem to indicate that the Ai are approximately proportional  to the (~i 
when log p is highly variable, but this is clearly not correct. 

The results above show that the A~ are strictly increasing in a for sufficiently 
large a. For variation this large, any further increase, whether small or large will 
favor coexistence. However the Ai may decrease before they increase so that for 
some components of  variability, some increases in a will not favor coexistence and 
could lead to competitive exclusion. However there is a natural class of situations 
where any increase in a will increase the A~. This occurs when we choose to increase 
variation orthogonal to some particular factor or set of factors so that the effect of  
these factors is kept constant. Let Y be one of these factors and define 
logR = E[logpl Y, 6l, c52] and X = logp - E[logp] Y, 61, c~2]. Increasing variation 
in Xtherefore increases variation orthogonal to I7, 62, 32. Since E[X'[R,  61, 32] = 0 
we have (dAi/da)[, = o = 0. The strict convexity of the A~ now implies that the Az are 
also strictly increasing functions of  a. Thus small, as well as large, increases in the 
variation in X are always favorable to coexistence. 

Example 1. Let Y - 0, then Xis  variation orthogonal to death rate variation. Thus 
it is variation in log p due to birth-competition with the effect of covariation with 
death rates removed. E[logfl*/fl*131,32] is unaffected by a and the variation in 
logfi*/fi~ is increased about  this conditional mean value. 

Example 2. Let Y = fi~. In this case the Ai increase as variation in Jog fl~ is increased 
about  E[log  fl*[fl*, ~ ,  ~2]. 

Example  3. Let Y be some environmental factor like temperature known to affect 



10 P .L .  Chesson 

the {/* in a certain way. Increasing variation in X then corresponds to increasing 
variation in log p with the effect of temperature variation kept constant. 

In these examples the A i are strictly increasing in o. It follows that a higher value 
of o allows coexistence for a wider range of possibilities for X', R, 61 and 62. For 
example, for a given o let A, be the set of possible probability distributions of 
(X', R, (~1,32) having the property that th e A~ are both positive. Then A~ is a 
monotonically increasing family. This suggests that coexistence is possible under 
broader circumstances with larger o. 

The method above deals only with components of variation orthogonal to death 
rates. In other cases it is necessary to consider the nature of the statistical 
dependence between the death rates and the component of variation. For example 
suppose 

X = log fl*/fl~ - E log fl*/fl* 
and let 

then 

2 = exp{E log/~J'//~} 

dA~da ~=o = E 1)~zlX'+ 2zl (19) 

where ~i = 6 / ( 1 -  6i) for i# j .  Any increase in o will favor coexistence if 
(dAi/da)l~=o is nonnegative for i =  1,2. This will be so if X' is correlated 
nonnegatively with zl/(1 + 2~1) and nonpositively with "c2/(1 + 2- ir2), i.e. X' must 
tend to increase with ~1 and decrease with ~2. These conditions become a little more 
interpretable for small death rates for then 

dA1 
I 

[ ~ E,~fzX' (20) 
do"  o-=0 

and coexistence is favored by any increase in o- when X' is positively correlated with 
32 and negatively correlated with ill. This requires a tendency for a species to 
experience relatively favorable periods for birth-competition while the other species 
experiences high death rates. When the reverse conditions hold small increases in e 
will be unfavorable to coexistence. However in all cases, sufficiently large increases 
in o continue to favor coexistence. 

Correlations between birth-competition and death rates may also permit 
coexistence to be favored by increased variation in death rates. For example 
Chesson and Warner (1981) show that the boundary growth rates will increase as 
functions of the variances of the death rates under the assumptions that death rates 
are small and 3 i is positively correlated with •*/B* for i # j. This latter condition i r~j 
differs slightly from the condition above for the Ai to increase as functions of 
increasing variability in log B*/13*. 

It does not appear that death rate variation can promote coexistence in the 
absence of correlations with birth-competition for when birth-competition does not 
vary, Jensen's inequality implies that 

A1 ~< log{1 - Efi~ + (E32)/~//~2} (21a) 
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and 

A2 ~< log{1 - E62 + (E6t)fl~/~}. (21b) 

These upper bounds on the Ai cannot both be positive so that coexistence cannot 
result from death rate variation alone. Indeed large variation in death rates can be 
quite unfavorable to coexistence, for example Chesson and Warner (1981) study the 
effect of increasing variation in (~1, 62) so that values near (0, 1) and (1,0) are 
assumed with some fixed probability. The variation in birth-competition is kept 
constant and it is found that both boundary growth rates eventually take on 
negative values. Thus a situation of random exclusion of one of the two species 
occurs. 

That large variations in death rates may lead to competitive exclusion is not 
surprising when it is realized that large death rates permit large declines in 
population density during unfavorable periods. Indeed, coexistence is generally 
more likely when death rates are smaller, for Chesson and Warner (1981) have 
shown that negative boundary growth rates may become positive when death rates 
are uniformly decreased, while positive growth rates must remain positive. 

Summary of Conditions for Coexistence 

We have found that overlapping generations and variation in birth-competition are 
essential requirements for coexistence. Without overlapping generations, coexist- 
ence is impossible and as the degree of overlap in generations is increased, i.e., as 
death rates are decreased, coexistence becomes more likely. 

Coexistence requires that log p must vary about 0 and this variation must result 
at least in part from variation in birth-competition. Variability in log p about 0 is 
measured by E(log p) + /x E(log p)- .  For given death rate distributions, satisfying 
mild assumptions, it is always possible to find a minimum level of variability about 
0, for log p, such that coexistence occurs at all higher levels of variability. This 
minimum level of variability depends only on the death rate distributions and so is 
independent of both the mean advantage that one species has over another and the 
shape of the distribution of log p. 

We have identified a class of meth,ods of increasing variability in log p such that 
both boundary growth rates increase monotonically and unboundedly with 
increasing variability. In thes e circumstances any increase in variability is favorable 
to coexistence because both species will tend to decline more slowly, or increase 
more quickly, at low density. Moreover, a sufficiently large increase in variability 
will result in coexistence and no increase in variability can change coexistence into 
competitive exclusion. In these circumstances it follows that higher levels of 
variability permit coexistence in a broader range of situations. 

Such monotonic increases in boundary growth rates occur whenever the 
component of variation is chosen to be that part of log p orthogonal to a given set of 
factors, which include the death rates. Monotonic increases will still occur for other 
additive components of variation in log p provided they are appropriately 
correlated with death rates and the remainder of log p. Moreover, increasing any 
additive component of variation in log p will ultimately result in monotonic and 
unbounded increases in the A~ so that coexistence is the eventual result. This occurs 
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whether or not the component of variation has mean 0 so that the mean advantage 
can increase at the same rate as variation about the mean advantage and still lead to 
coexistence. The reason for this is that E(logp) + /x E(logp)-  can increase when 
IElogp] and Ilogp - Elogpl  are increased at the same rate. However if IElogpl is 
increased at a faster rate than Ilogp - Elogp] then E(logp) + /x E(logp)-  will 
decrease and exclusion will be the final outcome. 

In all of the above, death rate distributions are held constant and variability is 
increased through birth-competition. The effect of increasing death rate variability 
is complex. When death rates are small, increased variability in death rates will be 
favorable or unfavorable to coexistence depending on the correlations between 
death rates and birth-competition. Without variation in birth-competition, death 
rate variability cannot lead to coexistence. However, increasing death rate 
variability may lead to exclusion regardless of the presence of birth-competition 
variability. For example, random exclusion results from increasing variation in 
((~1, (~2) SO that values near (0, 1) and (1,0) are assumed. 

Our investigation of conditions for coexistence is best regarded as an 
exploration of the set of 4atobability distributions of (ill, 61, fi2,62) for which both 
boundary growth rates are positive. This set, which we shall call the coexistence set, 
is very complex and is not usefully described by a few parameters. Thus the set 
cannot be mapped precisely in any useful way and we must be content with special 
sections through the set (e.g., Figure 1 in Chesson and Warner 1981) or we can use 
the sort of results obtained here to do the following. 

1. Identify large subsets of the coexistence set and large subsets of its 
complement. 

2. Find a set of rules showing how to modify a given distribution so that 
(a) the coexistence set is entered; 
(b) another distribution in the coexistence set is obtained; 
(c) the coexistence set is left; 
(d) the coexistence set is not entered. 

Although not written formally as a set of  rules, our investigations do provide 
such rules, thus they establish lines of  comparison. For example, with relatively 
invariant death rate distributions, a gradient of  increased variation of log p about 0 
should lead towards coexistence. Whether or not this trend is monotonic depends 
both on the amount of variability at the low end of the gradient and the correlations 
between birth-competition and death rates. 

A More Specific Question 

The question, "What  are the general features of the coexistence set?" led to the 
methods of increasing variability discussed above. However, sometimes the focus is 
on a specific method of increasing variability with the question then being "how 
does it intersect the coexistence set?" For  example, a natural question is, "How 
does the situation of a constant reproductive output per individual, per unit time, 
compare with the situation of a varying reproductive output with the same mean ?" 
The important feature is that the mean reproductive output is specified as the same 
in the two situations. The two situations will thus involve the same total 
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reproductive effort but with a different distribution over time. To investigate this 
question we need to keep E/3* constant but alter the variation in/~* about E/~*. Even 
with this relatively narrow question there are still many ways of increasing 
variation. The following method is chosen on the basis of tractability. 

Define 

log fl* = log fl* + a X  I - qS~(cr) (22) 

where fl'~ = E[3i*, E X  I = 0 and Oi(a) -- log Ee ~x'. As o- is increased the variance of 
/~* increases but the mean remains constant. This increase in variance is 
accompanied by a change in shape of the distribution. However a change in shape, 
with an increase in variance about a fixed mean, is not unreasonable because 
normally one would expect the distribution of/3" to have positive density over the 
entire range (0, oe). Under these circumstances a change in shape must accompany 
the increase in variance. 

To analyze the model we first consider the situation where death rates are small 
and non-random so that the following approximation (Chesson and Warner, 1981) 
is applicable: 

A~ 6 * * o(61 62). (23) = ~ f ( / ~ x / / ~ )  - ~1 + + 

Now 

(24) 

where O(a) = log Ee ~xl -~:~). Thus the boundary growth rates are both increasing 
functions of a if and only ifO(~) + qSz(Cr) - q51(~)and ~ ( -  o-) + 01(a) - q52(o-)are 
both increasing functions of ~r. This condition is not greatly restrictive and 
essentially requires the variation in X'  1 - X  2 to exceed the difference in the 
variation of X'  1 and X~ separately. Rather than attempt to make this statement 
more precise we shall just give the following illustrations. 

Let ( X ' p X 2 )  be bivariate normal,  then ~bi(o-)= 1 2  , 5a V X  i and 0 (o ' )=  
~ a 2 ~ ( X ' l  - X2).  The Ai are both unbounded increasing functions of  a provided 

f ( x ' ,  - x l )  > I ~ x ' l  - f x l l  (25) 

so that the "variat ion" spoken of above is given by the variance in this example. 
Inequality (25) is always satisfied when Jf] and X~ are nonpositively correlated. 
When X'  1 and X 2 have positive correlation, 7 say, then this correlation places the 
restriction 7 2 < "]/'X'I/~//'..Y 2 < ~; - 2 on how much u,/W' 1 and ~//-X~ may differ if (25) 
is to hold and coexistence is to be favored by increasing variation. 

The significant features of  this example are that there are broad  situations where 
increases in a do favor coexistence and also broad situations where they do not. 
However, we should note that the approximation (23) breaks down as o- is increased 
beyond some level depending on the magnitude of the death rates. The approxi- 
mation does hold uniformly for finite intervals of  a and so the conclusions above 
apply for o- in some finite range. This range increases to oe as the death rates 
decrease to 0. 

To see what happens when death rates and a have no restriction, note that the 
mean advantage # = constant + q52(a ) - (~1(o- ) .  The q~i a r e  convex functions of  a 
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and only in the case where X' i has a finite upper bound m i does qS~(~r)/~r converge to a 
finite limit. This leaves open the possibility that/~/G is unbounded as cr increases and 
indeed this is so when X' 1 and X 2 are normal with different variances. If Ilz/o-I --,  ov 
we must have E(log p)-  /x E(log p)+ ~ 0 since Ilog p -/~]/~r does not increase with 
a so that there must be a decline in the variation of log p about 0. Thus, in the 
normal case with unequal variances, exclusion is the eventual result of increasing 
the variances of the birth-competition parameters while their means are kept 
constant. This is clearly also true in a great variety of other cases. 

Combining the results above with those for small death rates, it can be seen that 
there are broad situations where increasing the variances of the birth-competition 
parameters initially leads to increasing boundary growth rates and possibly 
coexistence but eventually one of the boundary growth rates decreases leading to 
competitive exclusion. 

There are at least two easily identified cases where coexistence is the ultimate 
result of increasing the variances of  the/3*'s while their means remain constant. If 
the X~ have finite upper bounds m i  then (logp)/~r ~ (X' 1 - X~) - (ml - m2) so 
provided this quantity takes both positive and negative values, the boundary 
growth rates increase to + ~ .  Also when X'a and X~ are identically distributed, # 
does not change with o- and our work on additive components of log p applies to 
show that the A i again increase to + ~ .  These examples are quite particular but 
they are given in the expectation that they reflect approximately the results for the 
many useful cases near them. 

We have a mixed set of results for increasing variances of the/3" while the means 
remain constant. Increasing variances may initially be unfavorable to coexistence, 
or it may be favorable initially but unfavorable ultimately, or favorable both 
initially and ultimately, depending on the precise circumstances. However one thing 
is clear: coexistence can only occur if at least one of the/3* has nonzero variance. 
Thus if variances are increased from zero to positive values, there is no doubt that 
the breadth of situations permitting coexistence is increased. Can a statement like 
this be made for general increases in the variances of the/3* ? This is an important 
question for when comparing two field situations we are always dealing with 
changes in more than one factor. A conclusion that coexistence will occur if 
variances are increased, while everything else is being held constant, is perhaps less 
useful than the conclusion that there are a greater variety of conditions under which 
coexistence can occur with higher variances. 

To see if a greater breadth of values of the means /~* is consistent with 
coexistence when variances are higher, we recall that the sets A~, in our discussion of 
additive components of log p, are monotone increasing. It follows that the intervals 
(a~, bo) of values of the mean advantage kt which permit coexistence for a given value 
of a, are an increasing set of intervals. Expressing this in terms of values of 
log/3~//3~ we see that coexistence occurs when log ]7"/~* ~ (a~ + f(~r), b~ + f(a))  
withf(a)  = q51 (0) - q52(o-) + Elog 61/62. The length of the interval is an increasing 
function of o- and for this reason one could conclude that a broader range of (/31//3 2 ) - *  -* 
values is permitted with larger variances. However since the intervals are not 
necessarily increasing in the set theoretic sense, this conclusion is arguable. A 
different measure of breadth of the permissible (/31,/32) values could lead to a 
different conclusion. We are thus led to the difficult problem of  deciding the 
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biologically most appropriate measure of  breadth, which we shall not attempt to do 
here. 

5. Stochastic Boundedness with Positive Boundary Growth Rates 

In our study above of the manner in which environmental variability may lead to 
positive boundary growth rates we have assumed that such positive rates are 
essentially equivalent to coexistence. I f  both boundary growth rates are positive 
both species tend to increase from low densities and both have zero probability of 
converging to 0. Are both species also s.b. persistent ? We know that convergence to 
0 with probability 0 is not sufficient for s.b. persistence because the nonoverlapping 
generations model with 0 mean advantage does not give s.b. persistence yet does 
give 0 probability of  convergence to 0. However, the nonoverlapping generations 
model with 0 mean advantage does not satisfy the invasibility criterion, i.e., does 
not have positive boundary growth rates. Is invasibility sufficient for s.b. 
persistence? The answer here is also no for as we shall see s.b. persistence depends 
on how violently a population is returned to low densities as well as its power of  
recovery at low densities. To demonstrate s.b. persistence when both boundary 
growth rates are positive we need to impose mild additional conditions which 
ensure that population declines are not too violent. First we demonstrate by 
counter example that invasibility does not imply s.b. persistence. 

Let N(t) be population density and assume the following model of geometric 
growth followed by randomly determined crashes from high density (a crude model 
of  some small mammal  populations): 

N(t + 1) = 2N(t)  for N(t) < K 
N(t + 1) = U(t)N(t) for N(t) >~ X. 

The random variable U(t) takes values in the internal (0, 1) and U(0), U(1) . . . .  , will 
be assumed i.i.d. Regardless of the distribution of U(t), N(t) increases at low values 
and so the invasibility criterion is satisfied. Moreover ~(N(t) ~ 0) = 0. However in 
some situations N(t) converges in probability to 0 and so the population certainly 
does not persist in the sense of  stochastic boundedness. To provide the simplest 
example of  this assume that log2N(0) and log2 U(t) are both integers. Then log2N(t) 
is a homogeneous Markov  chain with integer state space. I f  Elogz U(t) = - oo (a 
model of  occasional very severe crashes) then log2N(t) is null recurrent because all 
states are recurrent but the expected return times are infinite. This null recurrence 
implies that ~ ( l o g 2 N ( t ) >  x ) ~  0 as t ~ o% for all x, and it follows that N(t) 
converges in probability to 0. Thus the population is not s.b. persistent. 

To prove stochastic boundedness for the lottery model we must preclude the 
kind of violent crashes seen in the above example. This is done by assuming that 
there is a positive number ~ such that 

E(1 - ~i) -r < ( 3 0 ,  (26) 

i = 1,2. To translate this into a condition on population fluctuations we note that 

p, ( t  + 1) /P , ( t )  i> 1 - ,~,(t) 
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and so (26) implies 

E[{P~(t + 1)/P,(t)}-~lP,(t)] ~< K < ~ (27) 

where K = E(1 - 61) -~ v E(1 - 32)-~, and we assume in (27), as we do below, that 
is an i.i.d, process. 

Theorem 5.1. Under the above assumptions both species 1 and species 2 are s.b. 
persistent whenever A1 and Az are both positive. 

The proof is given in Appendix 3 and uses the conditions above to prove that 
EP:~(t) remains bounded as t--* ~ ,  for some positive ~. Stochastic boundedness 
follows from this. 

We have seen that the situation A1 > 0, A2 > 0 is favored by certain kinds of 
environmental variability. Also, in this situation, both species will increase when 
rare and both species densities have 0 probability of converging to 0. However as 
shown above these latter properties are consistent with drift of the probability 
distribution of Pi(t) towards 0 densities, when severe stochastic population 
fluctuations are present. Theorem 5.1 shows that such drift of probability to 0 
cannot occur here when condition (26) is imposed. Consequently the sort of 
coexistence obtained here from a stochastic mechanism is as strong as one would 
expect in a situation where coexistence is explained by a deterministic mechanism 
operating in a stochastic environment (e.g. Turelli and Gillespie, 1980). This 
conclusion is further strengthened below. First it is shown that in addition to s.b. 
persistence, the population densities converge in distribution to positive random 
variables and then in the next section the properties of this distribution are studied 
for an interesting limiting case. 

Theorem 5.2. Under the hypothesis of Theorem 5.1, the distribution of Pi(t) converges 
as t ~ ~ to a distribution on (0, 1) w[zich is independent of  the distribution of Pi(O). 

The proof given in Appendix 3 follows Norman (1975) using the fact that 
Pi(t + 1) is nondecreasing as a function of Pi(t) for given environmental 
parameters. 

Convergence in distribution to a positive random variable is a commonly used 
persistence criterion (e.g., May, 1974). The limiting distribution obtained in 
Theorem 5.2 is the unique stationary distribution of the Markov chain 
{Pi(t), t = 0, 1,. . .}. If the system has been in existence long enough, P~(t) will have 
this stationary distribution and the quantiles of the limiting distribution will be 
equal to the stochastic bounds ~p and can be used for a quantitative assessment of 
the strength of the s.b. persistence in the same way that the rate of return to 
equilibrium, and the size of the domain of attraction of an equilibrium, provide 
quantitative assessments of the strength of stability in a deterministic framework. 
The variability in population density, expressed by the stationary distribution, gives 
the magnitude of population fluctuations and indicates how frequently low 
population densities occur. In the present situation, where the density variables are 
equivalent to relative frequencies, a bell-shaped stationary distribution will describe 
a much more stable situation than a U-shaped stationary distribution because low 
and high densities will be seen much less frequently. A detailed discussion of these 
ideas is given below in the section on stochastic boundedness and finite populations. 
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Finding the stationary distribution is a difficult problem in general, but its 
properties may be determined in certain useful limiting situations and this is the 
subject of the next section. 

6. Population Fluctuations in the Presence of Extreme Environmental Variability 

Coexistence requires log p to vary about 0, and this variation must result in part 
from variation in the ratio of the birth-competition parameters a*/R* In the t~l V'2"  

limiting case of infinite variability, this ratio takes only the values 0 and oo and then 
a substantial amount  of information can be found concerning the stationary 
distribution of  the process. As variability approaches infinity the model assumes the 
limiting form 

P~(t + I) = I1 - 3~(t)]Pl( t)  + [6l(t)P~(t)  + 32(t)P2(t)]l( t)  (28) 

where l( t)  takes only the values 0 and 1 and is independent of P~(t). According to 
(28), P~(t) remains in (0, 1). Moreover, under the assumption that g is an i.i.d. 
process, Theorems 5.1 and 5.2 apply to show that {P~(t)} has a stationary 
distribution on (0, 1). Thus we see that infinite variability in birth rates does not lead 
to infinite variability in adult population density, indeed the adult population 
density fluctuates in a stable manner. We now take up the study of the stationary 
distribution for this case of  infinite variability with the hope that its behavior 
generally reflects the situation where variability is large (so that the stationary 
distribution exists) but less than infinite. 

To simplify notation we note that (28) is of the general form 

Pl( t  + 1) = a(t) + b( t )Pl ( t )  (29) 

where (a(t), b(t)), t = 0, 1, . . .  is an i.i.d, process. It follows that 

EPx(t  + 1) = Ea + EbEP~(t)  (30a) 

and 

~tfP~(t + 1) = E b Z ~ P ~ ( t )  + ~ + 2EP~(t)Cg(a,b) + (EP~(t))ZWb. (30b) 

Defining 2 and v 2 to be the mean and variance of the stationary distribution, we 
obtain 

Ea E(~ 2 I 

2 =  l _ Eb E 3 j ( 1 -  I )  + E32I  (31) 

and 

v2 = •[62I(1 - 2) - ~51(1 - I)2] (32) 
2E[31(1 - I)  + 62I] - E[31(1 - 1) + 3 i l ]  2. 

In the special case where 31 = 32 = 3, and 3 is nonrandom, these formulae reduce to 

,~ = P ( I - -  I) (33) 

and 

v ~ - 2(1 - 2). (34) 
2 - 3  
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In (34) we see that the variance decreases with the adult death rate 8 while the mean 
(33) is unaffected. Even though birth rates are subject to infinite variability we see 
that variability in the adult population is strictly constrained by the death rate and 
in fact can be made arbitrarily small by decreasing the death rate. This conclusion 
can be seen to apply generally to this model for infinite variability by defining 
6i -- 0cSi where 0 is a nonrandom parameter permitting scaling of the death rates. 
Expression (31) for 2 is independent of 0 while expression (32) for v 2 is of order 0. 
Thus small death rates lead to small variance. This result provides a quantitative 
supplement to our previous finding that coexistence can only occur when 
generations are overlapping. We now find that the greater the overlap in 
generations, the more stable the coexistence because mean square fluctuations 
about the mean are less. The death rates 8~ do not figure prominently in the 
boundary growth rates with extreme variability for we have found A 1 ~ E(log p) § 
and A 2 ~ E(log p ) -  but the results here show that they remain a very important  
factor in population fluctuations. 

More detailed information about  population fluctuations can be found for the 
case where the c5~ are equal and nonrandom for then the shape of the stationary 
distribution can also be determined and this gives very useful information about  the 
behavior of  the stochastic bounds near 0 and 1. For this special case the stationary 
distribution is that of  the random variable 

P = ~ 8(1 - 8)~I(t). (35) 
t = 0  

When 6 = ~ and 2 = �89 (i.e. ~( I ( t )  = 1) = �89 it is well known that P is uniformly 
distributed on (0, 1). In other cases the distribution is not so simple, indeed the 
distribution may be singular with respect to Lebesgue measure. For  example, the 
distribution will be singular for 2 r ~ and 8 = �89 or whenever 1 - 8 = 1/s for 
integers s > 2; and so we cannot always describe the shape of the distribution in 
terms of its probability density for it may not have one. Thus we introduce some 
shape terminology applicable to the distribution function F(p) = ~ ( P  <~ p). This 
terminology is a direct extension of the terminology for distributions with densities. 

The distribution will be said to have an infinite mode at 0 if (1/p)F(p) ~ oe as 
p ~ 0, and an infinite mode at 1 if 1/(1 - p) .  [1 - F(p)] ~ oo asp  ~ 1. When such 
modes occur, one or both species will be found frequently in low numbers and so 
such situations are not ones of high stability. I f  a probability density exists but 
approaches 0 a sp  ---, 0 (p --, 1) we have F(p) = o(p) asp  --, 0 (1 - F(p)  = o(1 - p )  
as p -0 1). We say that the distribution is thin at 0 (at 1). When the distribution is 
thin at both 0 and 1 the species coexistence is a relatively stable one because small 
population sizes will occur very infrequently. 

To determine these properties for the distribution of P we note that P is always 
continuous even though not always absolutely continuous. Thus N(P  ~< p ) =  
~ ( P  <p ) .  Now I(0) = I(1) = . ' .  = I(r) = 0 implies that P ~< (1 - 8) r+l and so 

F((1 - 8) r+ l )  >/(1  - ~),+1 (36) 

Let n(8) be the least integer n such that 8(1 - 8)" < 1. For 8 < {-, n(6) is negative 
while for c5>~ 1, n(cS) is 0. If  P < ( 1 - 8 )  ~+1 we have I ( 0 ) = I ( 1 ) =  . - . =  
I(n(3) + r) = 0 which means that 



The Stabilizing Effect of  a Random Environment 19 

F((1  - ~ ) , * t )  ~ (1 - 2) "§247 (37 )  

Now making the substitution p = (1 - fi)'+* and defining 

= l o g ( 1  - , t ) / l o g ( 1  - ~ )  

we get 

and it is clear that the distribution of P has an infinite mode at 0 or is thin at 0 
according to whether 6 > 2 or 6 < 2. Since the distribution of 1 - P is merely the 
distribution of P with 1 - 2 substituted for 2, we see that there is an infinite mode at 
I or thinness at 1 according to whether ~ > 1 - 2 or 6 < 1 - 2. Thus the most stable 
coexistence occurs when 6 4 2/x (1 - 2) = �89 - [2 - 3[ which gives thinness at both 
0 and 1. This means that both species will be found very infrequently at small 
population sizes. How infrequently depends on the ratios log(1 - ;0/log(1 - 6) and 
l o g 2 / l o g ( l -  6) which repeats our earlier theme that stability increases as 6 
decreases. 

As ~ -~ 0 the distribution of P takes on the familiar normal form (~-~(P - 2) is 
asymptotically normal with mean 0 and variance 32(1 - 2) or N(0, 32(1 - 2))), but 
even more can be said: the entire stochastic process can be approximated by the 
Ornstein-Uhlenbeck process as follows. 

Theorem 6.1. Let 

x~(t) = ~ - ~ [ P l ( t / c s )  - ,~3 

for t = O, (~, 2~, . . .  and X~(t + h) = Xa(t) for h ~ [0, 6). I f  X~(O) converges in 
distribution as (~ --* 0 then the entire process {Xa(t), t >~ O} converges in distribution to 
a Markov process {X(t), t ~> 0} such that the distribution of  X(t) given X(s) is 
N(e-(t-~)X(s), 32(1 - 2)(1 - e 2(t-s))). 

Remark. The processes X~ and X have distributions on the space of functions on 
[0, ~ )  that are right continuous and have left limits. This space is given the 
Skorohod topology (Billingsley, 1968) and the above convergence in distribution is 
weak convergence of measures on this space. Note that Xis an Ornstein-Uhlenbeck 
process (e.g. Breiman, 1968). 

Proof. The process X~ is a first order autogressive process and I presume that 
Theorem 6.1 is therefore well known. But if not the theorem is a special case of  an 
obvious minor extension, to processes on ( -  oo, oo), of  Turelli's (1977) appendix 
proposition. 

It  follows from the theorem that if ~ is small and P~(0) has the approximate 
stationary distribution N ( 2 , 1 ~ 2 ( 1 -  2)), then {P~(t)} will be approximately a 
stationary normal process (the stationary Ornstein-Uhlenbeck process) and P~(t) 
and P~(s) will have approximate correlation e -al'-~l. Thus for the special case 
considered here we have a very good description of the population fluctuations. 

The Ornstein-Uhlenbeck process also arises as an approximate description of 
population fluctuations about  equilibrium when small amounts of temporal 
environmental variability, or within-individual variability, are added to a de- 
terministic model having a stable equilibrium (May, 1974; Barbour, 1976). 
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Coexistence in the lottery model does not involve a stable equilibrium yet the 
population fluctuations observed are similar to those found when coexistence is 
explained by a stable equilibrium. Thus a study of population fluctuations alone 
cannot distinguish an equilibrium explanation of coexistence from the kind of non- 
equilibrium explanation considered here. 

7. Stochastic Boundedness and Finite Populations 

In previous sections we have learned how environmental fluctuations can lead to a 
situation where both species are s.b. persistent and we would like to interpret this as 
a demonstration that the two species coexist. We now try to justify this conclusion 
by taking a detailed look at stochastic boundedness and seeing how it applies to the 
lottery model. Like most analytical models in population ecology the lottery model 
treats population size as a continuous variable and ignores variability relevant to 
small populations. Thus we refer to it as an "infinite" population model. Like most 
stochastic persistence criteria, stochastic boundedness is designed for infinite 
population models. In order to see that stochastic boundedness is a sensible 
persistence criterion we try to understand what, if anything, it has to say about 
"finite" population models in which population size is a discrete variable and which 
include phenomena like within-individual variability (Chesson, 1978) allowing 
chance extinction to occur at low densities. Only in this way can we see how to 
interpret stochastic boundedness in the real world. 

Stochastic Boundedness 

Persistence in the sense of stochastic boundedness entails the existence of a positive 
random variable, with distribution function Gi, such that 

Ci(p) >1 ~'(P,(t) <<. p) (38) 

for every p. The least possible distribution satisfying (38) is defined by the formula 

ai(p) = sup ~(P,(t) <~ p), (39) 
t 

at continuity points of the RHS. This distribution will be called the bounding 
distribution. 

Since G~ is the distribution of a positive random variable G,(p) ~ 0 as p ~ 0 
which means small population densities have probabilities that are small uniformly 
in time. It is also helpful to keep in mind that this property of the probabilities 
imposes a corresponding property on the expected proportion of any set of times 
having Pi(t) <~ p. In particular letting 7(P, A) = proportion of times t ~ A such that 
Pi(t) <~ p we have 

E~(p, A) <~ a,(p) (40) 

for bounded A. When A is unbounded 7(P, A) may not be well defined but we can 
define an asymptotic expected proportion as 

d e f  _ _  

E7( p, A) = lira ET(p, A,) (41) 
t 
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where At = {1 ,2 , . . . , t}c~A.  Such asymptotic expected proportions are also 
bounded by Gi(p). Thus expected proportions have the property of being uniformly 
small for small population densities. 

The above observations contain the main intuitive idea behind stochastic 
boundedness, that is, small populations are seen infrequently. Stochastic bounded- 
ness implies a steadiness to population fluctuations. No trends to ever lower 
population densities are possible and the average frequency of fluctuations to low 
density does not increase with time. 

In conjunction with these qualitative ideas one can use the bounding 
distribution to indicate the strength of the stochastic boundedness. For example, 
consider the case of infinite variability in the lottery model with the stationary 
distribution as the initial distribution. In this case the bounding distribution is the 
stationary distribution and we know from section 6, above, that 

G~(p) = O(p=) (42) 

for smallp where ~ = ln(1 - 2)/ln(1 - 3), 2 is mean density and 3 is the death rate. 
Since c~ can take on any positive value there is a broad range of possibilities for the 
rate at which Gi(p) ~ 0 as p ~ 0 with a broad range of interpretations of the idea 
that small populations have small probabilities of occurring at any given time. In 
this example a large value of e, so that Gi(p) converges rapidly to 0, is a much 
stronger stochastic boundedness than is found when ~ is near 0 which means that 
the bounding distribution has an infinite mode at 0. 

In the above example we had to assume that the initial distribution was the 
stationary distribution before the bounding distribution was known. However 
since the process is asymptotically stationary this bounding distribution always 
describes the behavior of the process in the long term. Since long-term behavior is 
often the most relevant we are led to define an asymptotic bounding distribution 
according to the formula 

G*(p) = lira ~(P~(t) <~ p). (43) 
t ~ o O  

The asymptotic bounding distribution will give a better indication of the long-term 
behavior than G~(p) because it will be less dependent on the initial conditions and 
will equal the limiting distribution of P~(t) as t ~ o% when it exists. 

If stochastic boundedness is to be a useful criterion for population persistence 
the alternative situations should describe populations which we naturally regard as 
not persistent. If a species is not s.b. persistent then there is a positive number E, an 
infinite sequence {t,} of times, and a corresponding sequence {p,} of population 
densities converging to 0 such that 

~(Pi(t,) <~ p,) >1 e. (44) 

As a consequence of (44) we have 

ET(p, {tl, t2 . . . .  }) >~ e (45) 

for every positive p so the asymptotic expected proportion of {tl, tz , . . .}  which is 
spent below any positive density is at least e. Looking only at {t~, tz,. �9 �9 } one is led to 
conclude that much time is expected to be spent at very low densities. However this 
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conclusion need not hold if one looks at other sets of times. In particular (44) does 
not imply the existence of a positive e' such that 

EV(p, {1,2 . . . .  }) ~> e' (46) 

for all p, unless 

- - n  
l i r a -  > 0 (47) 

tn 

which requires that the times t, do not become increasingly spread out as time 
progresses. When (46) does hold the expected proportion of {1 ,2 , . . . ,  t} spent 
below any given positive density will approach ~', at least, for some infinite sequence 
of values of t. Thus there will be periods during which large amounts of time are 
expected to be spent at very low density. This will not be true when (44) but not (46) 
holds which suggests taking (46) as a minimal definition of a population which does 
not persist, and taking the strict alternative to this as a definition of a persisting 
population. However it seems likely that (47) will be satisfied in most instances in 
practice and so the extra complication of a definition in terms of  (46) seems hardly 
worthwhile. 

Expression (46) contains the intuitive notion of spending longer and longer 
times at lower and lower densities and so either the population is undergoing a 
general decline or population fluctuations are becoming worse through time. 
However the population may behave in one of these ways with some probability 
rather than with any certainty as we shall see below. Spending longer and longer 
times at lower and lower densities probably means that the population actually 
becomes extinct due to the effects of finite population size, which are not included in 
the model. This is discussed in detail below. 

In the lottery model we have seen three different circumstances where s.b. 
persistence does not occur. First there is the situation where Ai < 0, Aj > 0. Then 
r -~ 0) = 1 so that ~@(P~(t) ~< p) ---, 1 for all positive p and also E~(p, A) = 1 
for every unbounded set A and all positive p. Since Pi(t) declines to 0 it naturally 
must spend much time at low densities. 

Secondly there is the case A1 < 0, A2 < 0 which can arise when death rates are 
highly variable and negatively correlated. Then there are ~1, ~ > 0 with el + e2 = 1 
such that P~(t)~ 0 with probability e~. It follows that r ei and 
Ey(p, A) -- ei for every unbounded A and positive p. In this case only one species 
actually spends much time at low densities and that species is i with probability ~. 

Finally there is the situation A 1 = A 2 = 0 which we have only analyzed for the 
case of nonoverlapping generations. Then lOgPl(t)/P2(t) undergoes a mean 0 
random walk and we have ~(Pi(t) ~< p) ~ �89 i = 1,2 and E~,(p, A) = �89 for every 
unbounded A. The quantities r p) and ET(p,A ) associated with the 
stochastic boundedness criterion do not reveal obvious differences between this 
situation and the previous one where A~ < 0, i = 1,2. In both the expected amount 
of time spent at low densities is large but only in the present situation, where 
log Pl(t)/Pz(t) simply undergoes highly unpredictable fluctuations, do both species 
actually spend much time at low densities. However the distinction between these 
two cases disappears if one includes the effects of finite population size. This is 
discussed below where we shall argue that in both cases relatively rapid extinction 
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of one species is the correct interpretation with the identity of the species becoming 
extinct not being predictable a priori. 

The Interpretation of Stochastic Boundedness for Finite Populations 

The decision above to regard populations as not persistent because an asymptotic 
expected proportion of time is spent at arbitrarily low densities emphasizes some 
artificial features of infinite population models. In these models extinction in finite 
time is generally impossible (Chesson, 1978) and so we must consider other 
properties of the model which indicate tendencies toward extinction. This has been 
the motivation behind stochastic boundedness and the associated bounding 
distributions and asymptotic expected proportions. The other persistence criteria 
discussed here, invasibility, convergence to 0 with probability 0, and convergence in 
distribution to a positive random variable, are also designed for infinite population 
models. If such persistence criteria are useful they should give conclusions that are 
not altered substantially when the model is made more realistic by having 
population size a discrete variable and including factors like within-individual 
variability, i.e., these persistence criteria should give useful indications of the 
behavior of finite versions of the model. 

Infinite population models are often available as large population approxi- 
mations to finite population models. Obtaining an infinite model as a limit of a 
finite model usually involves letting some parameter that limits total population 
size, tend to ~ (Kurtz 1970, Wang 1975, Chesson 1978, 1981). This parameter 
which we shall call the "population scale" might be the carrying capacity, the total 
area of the habitat or, in the lottery model, the total number of territories available. 
Population density is expressed in units of population scale and the infinite model 
approximately describes the behavior of population density for large values of the 
population scale. In Appendix 4 a finite version of the lottery model is defined and it 
is shown that this finite model does indeed converge to the infinite model discussed 
in this paper. 

Assessing persistence in a finite model is not straightforward. Such models 
generally have the unhelpful property that eventual extinction occurs with 
probability 1. It is for this reason that none of the persistence criteria discussed 
previously, including stochastic boundedness, apply to finite populations. In the 
presence of inevitable extinction, attention shifts to the time at which extinction 
occurs and the nature of population fluctuations before extinction. One might call a 
population persistent if it has very low probability of becoming extinct on an 
ecological time scale and, when viewed on an ecological time scale, the population 
fluctuations are steady in the sense of not showing population crashes of ever 
increasing severity or a general tendency to decline. 

There are a number of difficulties with this definition of persistence in a finite 
model. First, finite models are usually quite difficult to analyze. Although diffusion 
approximations can be helpful here (Ludwig, 1976) they are not always desirable. 
Secondly a number of decisions have to be made. One has to decide what is meant 
by an ecological time scale. Also one has to decide the relevant population scale 
since the waiting time for extinction is greatly affected by population scale. For 
small populations extinction is usually quite rapid but as the population scale is 
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increased, and an infinite model is approached, the waiting time converges to 
infinity because infinite models do not generally permit extinction in finite time 
(Chesson, 1978). The necessity of these decisions suggests that any theoretical 
investigations must be qualified by a statement of the relevant ecological time scale 
and population scale to which they apply. For example in the common situation of 
a model with parameters that can take different values to represent different 
situations, one might expect the parameter values that lead to persistence to vary 
with the time scales and population scales chosen. 

Results of Ludwig (1976) and Barbour (1976) suggest a way around some of 
these problems. Ludwig considers a diffusion model of a finite population growing 
logistically and affected by both environmental variability and within-individual 
variability. There are two cases corresponding to s.b. persistence or not in the 
infinite limit of this finite model. When the infinite model gives s.b. persistence, the 
expected waiting time for extinction in the finite model is asymptotically some 
power of the population scale. Otherwise the expected waiting time for extinction is 
asymptotically equal to log K or (log K) 2 where K is the population scale. Thus the 
expected waiting time for extinction converges to c~ at a much faster rate when the 
infinite model gives s.b. persistence than when it does not. An analogous 
phenomenon to this has been documented by Barbour (1976), for the case of a 
constant environment, where the waiting time for leaving a neighborhood of 
equilibrium increases with K at quite different rates depending on the stability of the 
equilibrium. 

When two situations give rise to substantially different rates of increase for the 
waiting time for extinction, sufficiently large values of K will lead to substantial 
differences between the actual waiting times for extinction. Thus for population 
scales above some particular level there will be a large range of values for the time 
scale on which persistence clearly occurs in one situation and extinction in the other. 
In other words the conclusions concerning persistence will be quite insensitive to the 
actual population and time scales chosen. This property will only be of use if the 
large difference in the waiting times for extinction appears on population and time 
scales that can be regarded as realistic in the real world. Unfortunately there are 
little data on this at the present time especially for the cases of main interest here 
where the environment is stochastic. The numerical results of Ludwig (1976) are 
unfortunately too limited for the purpose of seeing if large differences in extinction 
times do appear on realistic population and time scales. The best evidence can be 
found in a series of papers (Bartlett 1957, Leslie 1958, Leslie and Gower 1958, 1960, 
Bartlett et al. 1960) for constant environment models where stability or not of the 
infinite model leads to enormous differences in waiting times for extinction on 
realistic population and time scales. 

As mentioned above the dichotomy in rates of increase of the waiting time for 
extinction observed by Ludwig corresponded to s.b. persistence or not in the infinite 
version of the model. There are strong intuitive reasons for expecting that the 
stochastic boundedness criterion, applied to the infinite version of the model, may 
quite generally determine a dichotomy in the rates at which waiting times for 
extinction increase with population scale, K, in the finite model. The fact that the 
finite model converges to the infinite model means that for large values of K the 
fluctuations in population density in the finite model will remain similar to those in 
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the infinite model for long periods of time. Deviations will enter mainly at low 
densities where extinction may result in the finite model. Stochastic boundedness 
ensures that a small proportion of time is spent at low densities and the alternative 
generally means that arbitrarily low densities will be seen with some fixed 
probability. This dichotomy seems likely to bring about a similar dichotomy in 
waiting times for extinction and how rapidly they converge to oe as functions of  
population scale. This conjecture is the subject of ongoing research but much can be 
learned by taking the following simplistic approach. 

Let TK be the amount of time which must elapse in the infinite model before the 
population is expected to have spent a time ~ less than or equal to the density talK. 
The number m is interpreted as an absolute population size in the finite model. Thus 
irk indicates how long one must wait before expecting to have seen T times with 
absolute population sizes less than m. The rate at which irk increases with K is of 
interest in its own right, but in addition we shall take it as an indication of how 
quickly the waiting time for extinction in the finite model ought to increase as a 
function of K. For this interpretation we note that the finite and infinite models 
should behave similarly for absolute densities above m provided m is reasonably 
large. We also assume that r is the amount of time necessary to have spent below the 
population size m to give a reasonable chance that extinction has occurred in the 
finite model. The chief justification for taking the behavior of TK as an indication of  
the behavior of waiting times for extinction is that it works for Ludwig's model; and 
although Ludwig's model is highly specific the dynamics at low population density 
are representative of a broad class of situations. However, as with all simplistic 
treatments of probability there are almost certainly many situations in which the 
present analysis is misleading. 

The quantity TK satisfies 
equivalently 

the equation TI(Ey(m/K, {1,2 . . . .  , TK}) = z or 

T~ 

~, F,(rn/K) = r (48) 
u=f  

where F~(p) = ~(Pi(t) <<. p). For a stochastically bounded situation this means 
TKGi(m/K) >1 z so that 

TK >i (49) 
Gi(m/K) 

and we see that the rate of convergence of T~ to oo is critically dependent on the 
shape of the bounding distribution at low density. For  the lottery model with 
extreme variation in birth-competition we know that G~(m/K)~ (m/K) ~, 

= ln(1 - 2)fin(1 - c5), so that 

TK = 0(K~). (50) 

Thus irk increases as a power law as it does in Ludwig's stochastically bounded 
cases. The assumptions leading to stochastic boundedness in the general form of  the 
lottery model also imply that TK increases at least as fast as some positive power of 
K (see the proof  of Theorem 3.2, Appendix 3) but there is no simple formula for ~. 

For  the cases where stochastic boundedness does not occur in the lottery model 
we only know Ft(p) when generations are nonoverlapping. Then log Pt(t)/Pz(t) is 
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asymptotically normal with mean log P1 (O)/P2 (0) + pt and variance t~//" log p. For 
# < 0 and large t this is also the approximate distribution of  log P~(t). Substituting 
in (48) we obtain 

TK = 0(log K). (51) 

In the general case of the lottery model with A ~ < 0 and A 2 > 0 we know that 
log P~(t) is eventually bounded above by a random walk with negative mean and it 
is not difficult to see that (51) holds there too. 

In the case where/~ = 0 and generations are nonoverlapping the asymptotic 
normal distribution leads to 

TK = 0((log K)2). (52) 

Thus for the lottery model, in the cases where the information is available, TK 
converges to ~ at quite different rates depending on whether it is s.b. persistent or 
not. Indeed if one takes the ratio of Tr in any s.b. persistent case, to that in any non 
s.b. persistent case then this ratio converges to oe with K. However it should also be 
appreciated that the rate of increase of TK within s.b. persistent cases varies 
substantially. For example in the case of extreme variability with )~ = EP~(t) - �89 
and 6 = 0.1, TK = 0 ( K  3'32' ' ' )  while with 2 = 0.1 and 6 -- 0.5, T~: = 0(K~176 
Moreover in the latter case TK diverges from log K or (log K) 2 at very slow rates so 
that really very large population scales might be needed before this case of s.b. 
persistence is clearly distinguishable from cases which are not s.b. persistent. Indeed 
the situation where Tr increases as some small power of K barely deserves to be 
called persistence. It seems inevitable that there will be a grey zone where TK is in a 
range which does not allow the model to be classified as giving persistence or not. 
Thus we conclude that s.b. persistence by itself is not adequate for confidence that a 
situation is really one of population persistence. Some knowledge of the bounding 
distribution is necessary also. 

In addition to information about TK, the bounding distribution indicates the 
nature of population fluctuations in the infinite model. For large K the fluctuations 
in the finite model will be similar to those in the infinite model over a long period of 
time. We know that stochastic boundedness confers some degree of stability on 
population fluctuations in the infinite model, depending on the bounding 
distribution. Thus a corresponding degree of stability of population fluctuations is 
also conferred on the finite model for large K. We conclude that stochastic 
boundedness, together with a suitable bounding distribution and sufficiently large 
K, is capable of ensuring the other part of our requirement for persistence in finite 
populations viz. population fluctuations are stable over ecological time. 

The persistence criteria invasibility and convergence to 0 with probability 0, are 
useful steps on the way to proving stochastic boundedness, but they do not imply 
stochastic boundedness and indeed may permit large amounts of time to be spent at 
arbitrarily low densities, i.e., relation (46) can be satisfied. Thus persistence 
according to either of these criteria does not guarantee stable population 
fluctuations nor long waiting times for extinction with large K. Convergence in 
distribution to a positive random variable implies stochastic boundedness and the 
asymptotic bounding distribution is the limiting distribution. Thus persistence may 
be inferred from the existence of a suitable limiting distribution. The main question 
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here is whether convergence in distribution to a positive random variable is superior 
to stochastic boundedness as a persistence criterion. Knowledge of the existence of 
a limiting distribution is certainly useful information but it provides no further 
protection against long periods at low density than stochastic boundedness. 
Therefore it should not be necessary to prove convergence in distribution to a 
positive random variable before persistence is concluded. 

8. Discussion 

We have shown that a stochastic environment can be the mechanism of coexistence 
of competing species. In the lottery model the important features are overlapping 
generations and variation in birth-competition so that both species have favorable 
periods, i.e., periods when they are increasing. Section 4 shows mathematically how 
these features lead to coexistence but the following intuitive explanation helps to 
indicate the generality of the results. 

In general situations with overlapping generations, the adult population may 
act as a store of the effect of large recruitments, e.g., if a large cohort is recruited 
during a season, and adult death rates are low, this cohort may dominate the 
population for several subsequent seasons. Indeed this phenomenon is not 
uncommon in commercial fisheries. As we shall see below, the potential for storage 
of the effects of favorable periods leads to an asymmetry in the way in which 
favorable and unfavorable periods contribute to the mean instantaneous growth 
rate of a species. This asymmetry is especially important for coexistence in the 
lottery model where a favorable period for one species is necessarily unfavorable for 
the other species. 

For a species at low density, in the lottery model, periods which are favorable as 
a result of relatively high birth-competition lead to arbitrarily large instantaneous 
growth rates. However periods which are unfavorable, because of relatively low 
birth-competition, must have instantaneous growth rates exceeding log(1 - 6~), the 
instantaneous survivorship of adults, which reflects the capacity to store the effects 
of previous favorable periods. As a result of this lower bound on growth rates, 
increasing variation in birth-competition, so that the favorable periods become 
more favorable and the unfavorable periods less favorable, tends to increase the 
boundary growth rate (the mean instantaneous growth rate at low density). With 
high variability the effect of unfavorable periods is small by comparison with that of 
the favorable periods. This is reflected in the asymptotic expressions 
A1 ~ E(log p)§ zl2 ~ E(logp)- and the observation that each species can persist 
provided its favorable periods are sufficiently favorable, independently of how 
unfavorable the unfavorable periods might be. Consequently both species can 
persist under quite broad conditions when the environment varies. 

The above discussion deals with how variation affects mean instantaneous 
growth rates at low density. Since one species is at high density while the other is at 
low density and one species gain is the other's loss, there are corresponding 
implications for high density. This is discussed fully in Chesson and Warner (198 I), 
but the main point is that unfavorable periods make the more important 
contribution at high density because the gains that can be made by a species at high 
density are constrained by the other species' death rate. The asymmetry between 
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favorable and unfavorable periods, and the reversal of the relative importance of 
the two for low versus high density, permits coexistence in a variable environment 
even though it is not possible in a constant environment. 

As might the expected the asymmetries between favorable and unfavorable 
periods are accentuated by low death rates and coexistence is then more likely. On 
the other hand when generations are nonoverlapping there are no asymmetries in 
the way favorable and unfavorable periods contribute to the boundary growth 
rates. Consequently the mechanisms above do not operate in this case and 
coexistence is impossible. 

Coexistence also fails to occur as a result of death rate variation alone. This is 
easier to understand when it is appreciated that there are definite upper limits on the 
instantaneous growth rates as functions of adult death rates, but there are no lower 
limits. For example the instantaneous growth rate of species 1 will be large and 
negative if CSa is large and 62 is small. A large 61 means that most of the adults die, so 
that the effect of previous favorable periods is very weak, and a small 62 means that 
species 2 gives up very little space so that at low densities of species 1, little space is 
being opened up that might allow the expansion of species 1. With these 
considerations it is not surprising that death rate variation alone is not beneficial to 
coexistence. However we have seen situations where death rate variation in 
combination with variation in birth-competition, is beneficial to coexistence. 
Moreover in this paper death rates always mean death rates of established adults. 
Death rates of juveniles contribute to the birth-competition parameters fl* and in 
the real world they may be the chief contributors to variation in birth-competition. 
Thus according to our model, juvenile death rate variation may be an important 
contributor to coexistence. 

The key factors involved in coexistence in the lottery model, high variability in 
recruitment rates (birth-competition) and small adult death rates, could be included 
in other models. Provided per capita recruitment rates can be high at low 
population density then there is the potential for asymmetric contributions to the 
instantaneous growth rate of favorable versus unfavorable periods, and this may 
benefit coexistence, especially in situations where two species cannot have favorable 
periods simultaneously. Indeed, it has been shown that environmental variability 
and overlapping generations continue to promote coexistence in a class of 
generalizations of the lottery model (Chesson, in prep. ; Warner and Chesson, in 
prep.). 

The mechanism of coexistence in the lottery model is stochastic, yet the nature 
of the coexistence is not dissimilar to that found commonly in models having a 
deterministic mechanism in a stochastic environment (e.g., Turelli and Gillespie, 
1980). In both, species densities converge in distribution to positive random 
variables. Moreover in the lottery model with extreme variation, in birth- 
competition, but small adult death rates, the adult population will fluctuate very 
little and in some cases can be described approximately by the same stochastic 
process (the Ornstein-Uhlenbeck process) that is used to approximate fluctuations 
about equilibrium in a stable deterministic model to which a small amount of 
environmental variability, or within-individual variability, has been added. Indeed 
a stochastic mechanism relying on large environmental fluctuations need not lead 
to large population fluctuations. 
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To judge  whether  the na ture  o f  the popu l a t i on  f luc tuat ions  is indicat ive o f  
persis t ing species we have used the s tochast ic  boundedness  cr i ter ion.  This  cr i ter ion 
requires  that  the p robab i l i t y  o f  observing a popu l a t i on  be low any  given density,  
should  converge  to 0 with density,  un i fo rmly  in time. Consequen t ly  it places 
res t r ic t ions on the expected f requency o f  f luctuat ions  to low popu l a t i on  levels. 
Given  tha t  f luc tuat ions  in the env i ronment  will con t inua l ly  pe r tu rb  p o p u l a t i o n  
densities,  it is to be expected that  any  nomina t ed  popu l a t i on  density,  no ma t t e r  how 
small,  will eventual ly  be seen. Indeed  this is the usual  case in s tochast ic  popu l a t i on  
models  and  is not  an unreasonab le  pos tu la te  a b o u t  the real  world.  Thus  a 
r easonab le  persis tence cr i ter ion canno t  hope  to do  bet ter  than  place res t r ic t ions  on 
the frequencies with which such events occur.  

In  an infinite popu la t i on  model ,  s.b. persis tence together  with a b o u n d i n g  
d i s t r ibu t ion  which converges  rap id ly  to 0 as densit ies a p p r o a c h  0, seems to provide  
a sui table  guarantee  o f  inf requent  low popu la t ions  and long wai t ing t imes for  
ext inc t ion  in finite versions o f  the model .  We  have only  sought  deta i led in fo rma t ion  
on the bound ing  d i s t r ibu t ion  for  the version o f  the mode l  with infinite var ia t ion  in 
b i r th -compet i t ion ,  and  cons tan t  but  equal  dea th  rates. F o r  this case the bound ing  
d i s t r ibu t ion  converges  rap id ly  to 0 with popu l a t i on  density,  p rov ided  adu l t  dea th  
rates are  small.  There  are  s t rong indica t ions  tha t  this m a y  be true genera l ly  for  the 
lo t te ry  mode l  giving ano the r  reason for  bel ieving that  small  adu l t  dea th  rates are  
i m p o r t a n t  for coexistence in the lo t tery  compe t i t ion  model .  

Appendix I 

Proofs of Results from Section 3 

Proof of Lemrna 3.2. Let e > 0 be such that Elog{1 + F(0) v F(c)} < 0. To show that Pl(t)~(O,c) i.o. 
implies Pl(t) ~ O, a.s. we define 

A = {Pa (t) e (0, c) i.o. } 

B = {Pl(t) ~ 0 as t ~ oo} 

C = (Pl(t)e It, 1) i.o.}. 

Let % be the nth time that P1 enters (0, c) from [c, 1). Define z, = ~ if there is no such time. Now 

{rn+l < oo} _~ Cn ~ f [l+F(s,O) vF(s , c ) ]>l forsomet>~O c~ {% < oo} 
s - ~  

and, from the theory of random walks (Feller, 1971) it is clear that 

p = ~  {l+F(s,O) vF(s , c ) }>l for some t>~O <1. 

The z,'s are stopping times for the process (Revuz, 1975) and so 

~(C,]HT,) <~ pl~ . . . .  I 

where H~, is the a-field associated with z,. It follows that 

Hence ~(%+~ < oo) ~<p,~(% < oo) and so ~@(% < oo)~0 as n--* ~ .  Finally {~, < oo}+C giving 
~(C) = 0. Thus, on A, there is a time z such that Pl(t)~(O,c) for t/> z, a.s. 
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N o w ,  Oil A 

Pi( t  + z)/Pi(z) ~< F[ {1 + C(s,O) v r(s ,c)} .  
s = z  

F r o m  the law of large numbers  RHS --* 0 as t ~ 0% a.s. Hence Pa(t) ~ 0 as t --, 0% on A, a.s., which is the 
required result. 

Proof  o f  Lemma 3.3. Fo r  the case where p is not  a.s. equal to 1, we must  show that  Pl( t )  will be found 
outside A = [~, 1 - e] i.o., a.s. for every e > 0. First  of  all note that  

e /{ f ia (1  - e) + fize} <~ (1 -p)/{fl~p + f12(1 - p ) }  ~< (1 - e ) / { f i l e  + f12(l - e)} .  

For  definiteness assume N(p > 1) > 0, then, defining d = F(1 - e) we have ~ ( d  > 0) > 0 and hence a 
positive number  7 such that  ~ ( d  > 7) > 0. Fo r  given e > 0 there is a positive integer r such that 
~(1 + 7) ~ > 1 - e. Note  that P t ( t ) e A ,  d(t) . . . . .  d(t + r - 1) > 7, implies Pl( t  + r ) r  Define z, = nth 
time that P1 (t) ~ A. z, is a s topping time for P1- N o w  {P~ leaves A after z,} _ {there is an s >i 0 such that  
d(z, + s ) , . . . ,  d(z, + s + r - 1) > 7}-Since the sequence d(z,), d(% + 1) , . . ,  has the same distribution as 
the sequence d(0), d (1 ) , . . . ,  this latter event has probabili ty 1. Hence P;  mus t  always leave A eventually, 
a.s. which means ~ (P l ( t )  r A i.o.) = 1. 

Proof  o f  Lemma 3.4. To show that  N(Pl ( t )~  (1 - e, 1) i.o.) = 1 for A1 > 0 and e > 0, we note that  
N(p  > 1) > 0. Also the p roo f  of Theorem 3.1 shows that  there is a e > 0 for which Pl( t)  E [c, 1) i.o., a.s. 

Let r ,  be the nth t for which Pl( t )~[e ,  1). Define ~' = e t, c and define d and 7 as in (3.3) with e' 
replacing e in (3.3). N o w  d(z,), n = 1 , 2 , . . . ,  is an i.i.d, sequence, and by the law of  large numbers  for 
ergodic stationary processes 

n 

n 1 ~ l{d(~j+t)>7,/= 0 ..... r - l }  
j = l  

converges a.s., as n --* co, to 

~(d('c,+l) > 7, l = 0 . . . . .  r -- 1) > 0. 

Also, 

{d(z,+l) > 7, I = 0 , . . . , r  - 1} _~ {Pl( t )~[c ,  1) for t = ~, + 1 , . . . , %  + r and Pi(z,  + r) > 1 - e} 

f rom which it is clear that  this latter event occurs infinitely often. It follows that P~(t) E (1 - e, 1) i.o., a.s. 

A p p e n d i x  2 

Inequalities for  Boundary Growth Rates 

For  the inequalities (14a, b) we have 

A1 = Elog{cSip + 1 - 61} 

> E( log{ f lp  + 1 - ~51}) + + Elog(1 - 61)1~0<11. 

Since log is concave 

and so we conclude 

log{l ip  + 1 - 61} > 6~ logp  + (1 - 6~) logl  

A1 > E61(logp) + + E log( l  - ~51)1~p<1~ 

which is (14a); inequality (14b) is analogous.  F r o m  (A1) we conclude also that  

A~ > E(logp)  + + Elog611~p>l~ + Elog(1 - c~i)llp<ll 

> E(logp)  + + Elog~i (1  - cS1). 

(A1) 

(A2) 

(A3) 
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It is easy to see that E(logp) + > A1 and so Elog61(1 - 61) is an absolute bound on [E(logp) + - All 
depending only on the distribution of 61. 

Approximations to A ~ for small 6~ are obtained in Chesson and Warner  (1981) where it is shown that 
x -  1 log{ 1 + x 61(p - 1)} T E6~(p - 1) as x + 0. It follows that 

AI < E f l ( p  - 1). (A4) 

Appendix 3 

Proofs o f  Stochastic Boundedness 

Proof  o f  Theorem 5.1. To prove that both species are s.b. persistent whenever E(1 - 61) -~ < oo and g is 
an i.i.d, process, we use an adaptat ion of  Norman ' s  (1975) proof  of  tightness of  gene frequency 
distributions in a genetic model. 

Species 1 will be s.b. persistent if for some e > 0 there is a finite constant  M such that EPiC(t) <~ M 
because then ~ (P l ( t )  < x) <. x~M and this implies that infx> 0 supt ~(P l ( t )  < x) = O. 

Define Y,. = [1 + F(0) A F(C)]. For Pl(t)  <~ c we have Pl( t  + 1)/Pl(t) ~ Yc and therefore 

E[{PI( t  + 1)/Pl(t)}-~lPx(t)] ~< EY~ -~ (A5) 

for Pl(t)  <~ c. Hence 

E [ P ~ ( t  + 1)]Pa(t)] ~ P;~(t)EY~ -~ (A6) 

for Pl(t)  <~ c, while (27) implies that 

E[P;~(t  + 1)lPl(t)]  ~< c ~K (A7) 

for Pl(t)  >~ c. Combining (A6) and (A7) we conclude 

EP? ' ( t  + 1) ~< E P ~ ( t ) E U  ~ + c ~K (AS) 

and this inequality holds for all positive c and any e sufficiently small. 
Now Y~/> (1 - 61) and so EYe  -~ < oo for ~ sufficiently small. Also e - t ( Y ~  - '  - 1)+ - log Y~ as ~+0 

and so from the monotone  convergence theorem we have E t - I ( Y f  ~ - 1) ~ - E log Y,. as e - ,  0. By 
relation (9), Elog ,Y~ > 0, for c sufficiently small, giving 

E Y 7  ~ < 1, (A9) 

for e sufficiently small. Combining this with (AS) we obtain 

eel~(t) ~< EP?~(0) + c -~K/ (1  - E Y ; ~ ) .  (A10) 

Thus species 1 will be s.b. persistent whenever EPic(O) < oo. However this condition is not necessary 
because (A10) continues to hold when the expectations are conditional on PI(0). Thus we have 

inf s u p ~ ( P l ( t  ) < xlPl(O)) = O. 
x > O  t 

The bounded convergence theorem gives 

inf E s u p g ( P l ( t )  < xrPa(O)) = 0 
x > 0  t 

and the required s.b. persistence now follows from the general inequality Esup, X~ >~ sup~ EXt. 
By interchange of species names this also shows that species 2 is s.b. persistent. 

Proof  o f  Theorem 5.2. To prove that Pi(t) converges to a distribution on (0, 1) we again use a 
modification of a proof  by Norman  (1975). 

Since A ~ and A2 are both positive it follows that ~ (p  < 1) and ~ ( p  > 1) are both positive. Lemma 3.4 

now implies that lim P1 (t) = 1 and Iim PI (t) = 0. In particular T = inf{ t ~> 0JP1 (t) ~> p} is finite a.s. for 
every p < 1. Note that T is a stopping time (Revuz, 1975). 

Let U be the transition operator for the Markov chain {Pl(t)}, i.e. Uf(p) = E[ f (P l ( t ) ) [P l ( t )  = p] 
for bounded m e a s u r a b l e f  on (0, 1). From equation (3) it is easily seen that Pl( t  + 1) is an increasing 
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function of Pl( t ) ,  conditional on g. It follows that U maps  nondecreasing functions into nondecreasing 
functions. 

For nonnegative, nondecreasing f we have 

Ef (P l ( t ) )  >~ E[ f (P~( t ) ) ;  r <~ t] 

and using the strong Markov property (Revuz, 1975) the RHS is equal to 

E [ U ' - T f ( P ~ ( T ) ) ;  T <~ t] >1 E [U '  7f(p); T~< t]. 

Applying Fatou 's  lemma we have 

lira Ef(P~(t))  >f E limm Ut-  ~f(p)l~r<,,~ = lim U'f(p) .  

Since this holds for all p < 1, and the RHS is nondecreasing in p, it follows that  

clef 

lira Ef(Pa(t ) )  >! U ~ f  = lim lira U~f(p). 
t ~  p ~ l  t~wo 

On the other hand if [f(P)l ~< M < o% for all p, we have 

E f ( e l ( t ) )  = EU"f (PI ( t  - u)) 

<~ E[U"f(P~( t  - u)); P~(t - u) <~ p] + E[U"f(PI(t - u)); Pa(t - u) > p ]  

<~ U"f(p)  + M ~ ( e x ( t  - u) > p). 

Hence 

lim Ef(P~(t))  <~ UUf(p) + M sup ~(Pa( t )  > p). 
t 

Now the LHS is independent of  u and p while the second term on the RHS ~ 0 asp  ~ 1, by Theorem 5.1. 
Thus 

and therefore 

l i m E f ( P l ( t ) )  <~ U~f ,  

lim Ef(P~(t))  = U|  
t ~ m  

for all bounded nondecreasingf,  and the limit is independent of the distribution of P~ (0). It follows that  
P~(t) converges in distribution to a random variable P on [0, 1]. However the s.b. persistence of 
Theorem 5.1 is equivalent to tightness of  P~(t) on (0, 1) and so it follows that  the distribution of P is 
concentrated on (0, 1). Moreover this distribution is independent of  the distribution of PI(0). 

A p p e n d i x  4 

The Finite Mode l  

It has been argued in the text that s.b. persistence for an infinite model implies a suitable persistence for 
large population scales in a finite model converging to the infinite model. We must  now define the finite 
version of the lottery model and show that it does indeed coverge to the infinite version so that the 
discussion in the text is applicable. 

For simplicity in presentation we will assume that cl = c2, i.e. the allocation of space to juveniles is 
purely random, and in setting up the model all statements are conditional on the environment process ~. 
We let K = the number of  suitable homesites available to the two species - it is the population scale. We 
need some definitions: 

1. Ni(t)  = number of adults of  species i at time t and Pi(t) = Ni( t) /K.  
2. S~(t + 1) = number of  adults of  species i at time t that are still living at time t + 1. 
3. Li(t + 1) = number  of  larvae of species i seeking homes during (t, t + 1]. 
4. R~(t + 1) = number  of  larvae of species i finding homes during (t, t + 1]. 
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The fundamental  equations governing the system are now 

N,(t  + 1) = S,(t  + 1) + R,(t  + 1), (A l l )  

i = 1,2. We do not  insist that N l ( t )  + N2(t) = K, i.e. some space may remain empty, however our 
assumptions will entail that Nx( t )  + N2(t )  = K has high probability. 

The process N = {(N~(t ) ,N2( t ) ) ,  t = 0, 1 . . . .  } is a Markov process with transition probabilities 
defined as follows. Given N(t), the variables Si(t + 1), i = I, 2, are independent binomial random 
variables with n-parameters Ni(t) and p-parameters  1 - 61(t). That  is, given N(t) and g the deaths of  
different adults are independent events. 

The number  of  larvae L~(t) has the representation 

Ni(t) 

Li(t) = Z Mij( t )  
j=l 

where the random variables Mq(  t ), i = 1, 2, j = 1 , . . . ,  N~( t ) are conditionally independent given N(t), 
EMq( t )  = fli(t) and the distribution of  Mq(t )  does not  depend on t , j  or K. Mis(t) represents the number  
of  offspring during (t, t + 1] f rom t he j t h  adult of  species i living at time t. 

Finally if K -  S~(t + 1 ) -  S2(t + 1)/> L , ( t  + 1) + L2(t + 1) then R,(t  + 1) = L~(t + 1), i =  1,2. 
Otherwise, given S~(t + 1), L~(t + 1), i = 1,2, Ri(t + I) is hypergeometric: 

K -  S~(t + 1 ) -  S2(t + 1 ) -  r 
~ ( R , ( t  + 1) = r lSj ( t  + 1),Lj(t + 1),j = 1,2) 

( L~(t + l) + L2(t + l) ) 

K - S a ( t + l ) - S 2 ( t + l )  

and R , ( t  + 1) + Rz( t  + 1) = K - S~(t + 1) - Sz( t  + l) so that all available space is used up. 
We assume that fl,(t) > 6~(t), i - 1,2. When this is so it is easy to see that  the transition probabilities 

have the property that 

P 

S,(t  + 1) /K o p,[1 - 6,(t)-[ (A12) 

i = 1, 2, if K ~  ~ and Pi(t)--+Pl; and 

P 

Ri(t + 1)/K ~ [6l(t)pl + 62(t)P2]fli(t)Pl/[Pxfll(t) + P2fl2(t)], (A13) 

provided Pl + P2 = 1. This means  that  the conditional distribution of  Pi(t + 1) given Pi(t), i = 1, 2, 
converges on the relationship specified by equation (3). If we also assume that the distribution o f  
(P~(0), P2(0)) converges as K ~  c~ to a distribution where PI(0) + P2(0) = 1 and Pi(O) > 0 a.s., then we 
can prove the following. 

Theorem A1. As  K ~ oo the stoehastic proeess { P1 ( t ), t = O, 1 . . . .  } converges in distribution to the proeess 
given by equation (3). 

The proof is based on the following lemma where the symbol " ' ~ "  denotes weak convergence 
(Billingsley, 1968). 

Lemma A2. Let  nK be a probabili ty measure on the Borel sets ( ~ " )  in R",  f o r  K = 1,2 . . . .  Let  YK( " , x) be a 
probabili ty measure on ~ k  f o r  every x e R k such that 7r(B, x) is measurable in x f o r  every B ~  :~*. Suppose 
that nK ~ ~ as K ~ o~ and Yr(" , xK) ~ Y(', x) whenever x r  --* x as K ~ ~ ,  then the probabili ty measure 

p~c(B1 x Bz) = f 7K(Bz, x) dnK(X) 
OB 1 

#(B1 • B2) = / ?(B2, x)du(x). 
d B  

1 

P r o o f  Letf t  andfz  be bounded continuous functions on R m and R k respectively. Since n r  ~ n there is a 
sequence of random variables Xr  with distribution uK concerning everywhere to a random variable X 
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with distribution ~ (Billingsley, 197l). It follows that 

f l (Xr)  ff2(y)~.(dy, x~) 

converges everywhere to 

f l  (X) i f 2  (Y)7(dY, X). 

Applying the dominated convergence theorem we see that 

Lf x (xK) f f 2( Y),K( dy, XK) --, Ef l (X) f f 2(Y),(dy, X). 

The LHS and RHS are respectively 

f f l (x) fz (y)  d~K (x, y) and ffl(x)fz(Y) d~(x, y) 

which proves the lemma. 
To prove the theorem we identify ~K with the distribution of {(Pl(s), P2(s)), s = 0, 1 . . . . .  t} and YK 

with the conditional distribution of (Pl(t + 1), P2(t + 1)) given {(Pl(s), P2(s)), s = 0, 1 . . . . .  t}. The 
measure ~ is the conditional probability measure which makes P~(t + 1) satisfy equation (3) with 
probability 1 whenever Pt( t)  + P2(t) = 1. When P~(t) + P2(t) < 1,y specifies a slightly different 
relationship which need not concern us. 

The proof is by induction on t. If {(Pl(s), Pz(s), s = 0, 1 , . . . ,  t} converges in distribution to a process 
satisfying equation (3) with Pl(t) + Pz(t) = 1, then from Lemma A2 and relations (A12) and (A13) it 
follows that {(Pl(s), Pz(s), s = 0, 1 . . . . .  t + 1 } also converges in distribution to a process satisfying (A12) 
and (A13). Since the induction hypothesis is true for t = 0 we have demonstrated that the finite 
dimensional distributions of {(P~(t), Pz(t)), t = 0, 1 . . . .  } converge to those of a process satisfying (3), 
From Billingsley (1968, page 22) this is sufficient to imply weak convergence of the infinite dimensional 
distribution on R ~ with countable product topology. 

The proof given is actually for the conditional distribution of {(Pl(t), P2(t))} given 8, but since g 
does not change with K this is sufficient to prove the result unconditionally also. 
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